Mate 2509–03–Estadística, Economía PARCIAL 2 — (19/03/2019) ¹

Estimado estudiante: Todos los puntos deben estar debidamente justificados, mostrando el procedimiento mediante el cual llega a la respuesta. Sea ordenado y no olvide numerar.

- 1. En una muestra aleatoria de visitantes a un sitio turístico famoso, 84 de 250 hombres y 156 de 250 mujeres compraron recuerdos.
 - *a*) Construya el intervalo de confianza del 98 % para la verdadera diferencia de las proporciones de hombres y mujeres que compraron un recuerdo. Interprete el intervalo.
 - b) ¿Se podría afirmar que las proporciones difieren? Explique.
- 2. A veinte pilotos en un simulador de vuelo, se les midió el tiempo, en segundos, que tardaban en realizar cierta acción correctiva. Los tiempos fueron:

ĺ	5.2	5.6	7.6	6.8	4.8	5.7	9.0	6.0	4.9	7.4
ĺ	6.5	7.9	6.8	4.3	8.5	3.6	6.1	5.8	6.4	4.0

- *a*) Estime el verdadero tiempo medio que se tarda en realizar una acción correctiva con una confianza del 95 %.
- b) Estime la verdadera desviación del tiempo que se tarda en realizar una acción correctiva con una confianza del 95 %.
- 3. Sea Y_1, Y_2, \dots, Y_n una muestra aleatoria de una población $Y \sim N(\mu, \sigma^2)$ con μ conocida. Sea

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2$$

- *a*) Muestre que $\hat{\sigma}^2$ es un estimador insesgado de σ^2 .
- *b*) Muestre que $\hat{\sigma}^2$ es suficiente para σ^2 .
- 4. Sea $Y_1, Y_2, ..., Y_n$ una nuestra aleatoria de una población $Y \sim U(\alpha, 1)$.
 - *a*) Halle el estimador para α por el método de momentos.
 - b) Muestre que el estimador por el método de momentos es consistente para α .
- 5. Sea Y_1, Y_2, \ldots, Y_n una nuestra aleatoria de una población $Y \sim Beta(\alpha, \beta)$ con $\beta = 1$
 - *a*) Halle el estimador para α por máxima verosimilitud.
 - *b*) Se tomó una muestra aleatoria de esta población y los valores fueron 0.04, 0.75, 0.44, 0.90, 0.76, 0.69 y 0.59. Estime α usando el estimador que halló en el inciso anterior.

TIEMPO: 1:20.

NO SE PERMITE EL USO DE APUNTES, TEXTOS, TABLETS O CELULARES. TODOS LOS PUNTOS TIENEN EL MISMO VALOR.

BONO: Valor: 0.3/.Sea $Y_1, Y_2, ..., Y_n$ una muestra aleatoria de una población Y geométrica con parámetro p. Halle la distribución, media y varianza de $U = \sum_{i=1}^{n} Y_i$

¹El juramento del uniandino dice: "Juro solemnemente abstenerme de copiar o de incurrir en actos que pueden conducir a la trampa o al fraude en las pruebas académicas, o en cualquier otro acto que perjudique la integridad de mis compañeros o de la misma Universidad."